N-cofilin is associated with neuronal migration disorders and cell cycle control in the cerebral cortex.
نویسندگان
چکیده
Many neuronal disorders such as lissencephaly, epilepsy, and schizophrenia are caused by the abnormal migration of neurons in the developing brain. The role of the actin cytoskeleton in neuronal migration disorders has in large part remained elusive. Here we show that the F-actin depolymerizing factor n-cofilin controls cell migration and cell cycle progression in the cerebral cortex. Loss of n-cofilin impairs radial migration, resulting in the lack of intermediate cortical layers. Neuronal progenitors in the ventricular zone show increased cell cycle exit and exaggerated neuronal differentiation, leading to the depletion of the neuronal progenitor pool. These results demonstrate that mutations affecting regulators of the actin cytoskeleton contribute to the pathology of cortex development.
منابع مشابه
Editorial: In vivo Cell Biology of Cerebral Cortical Development and Its Related Neurological Disorders
The brain consists of complex but precisely organized neural networks, which determine the structural basis of higher order functions. Remarkably, this complex structure originates from a simple pseudostratified neuroepithelium. How it is formed is best seen in the elegant example of the cerebral cortex. In the developing mammalian cerebral cortex, polarized neural progenitors are arranged in a...
متن کاملEffect of paraoxon on the synaptosomal GABA uptake in rat hippocampus and cerebral cortex
Introduction: Paraoxon (the neurotoxic metabolite of organophosphorus (OP) insecticide, parathion) exerts acute toxicity by inhibition of acetylcholinesterase (AChE), leading to the accumulation of acetylcholine in cholinergic synapses and hence overstimulation of the cholinergic system. Since, reports on changes in the level of γ- amino butyric acid (GABA) during OP-induced convulsion have bee...
متن کاملReelin and cofilin cooperate during the migration of cortical neurons: a quantitative morphological analysis.
In reeler mutant mice, which are deficient in reelin (Reln), the lamination of the cerebral cortex is disrupted. Reelin signaling induces phosphorylation of LIM kinase 1, which phosphorylates the actin-depolymerizing protein cofilin in migrating neurons. Conditional cofilin mutants show neuronal migration defects. Thus, both reelin and cofilin are indispensable during cortical development. To a...
متن کاملSeptin 14 Is Involved in Cortical Neuronal Migration via Interaction with Septin 4
Septins are a family of conserved guanosine triphosphate/guanosine diphosphate-binding proteins implicated in a variety of cellular functions such as cell cycle control and cytokinesis. Although several members of septin family, including Septin 14 (Sept14), are abundantly expressed in nervous tissues, little is known about their physiological functions, especially in neuronal development. Here...
متن کاملNeuronal migration disorders: from genetic diseases to developmental mechanisms.
Neurons that constitute the cerebral cortex must migrate hundreds of cell-body distances from their place of birth, and through several anatomical boundaries, to reach their final position within the correct cortical layer. Human neurological conditions associated with abnormal neuronal migration, together with spontaneous and engineered mouse mutants, define at least four distinct steps in cor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genes & development
دوره 21 18 شماره
صفحات -
تاریخ انتشار 2007